|
$1)\,\,\,x = 1$ vế trái không xác định, ĐK:$x > 0$ • $\left| {x - 1} \right| > 1\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l} x > 2\\ x < 0 \end{array} \right.$ (loại $x < 0$) $(1) \Leftrightarrow {\log ^2}x - \log {x^2} \ge 3 \Leftrightarrow \left[ \begin{array}{l} \log x \le - 1\\ \log x \ge 3 \end{array} \right.\,\,\,\, \Leftrightarrow \left[ \begin{array}{l} x \le \frac{1}{{10}}\\ x \ge 1000 \end{array} \right.$ Do $x > 2$nên$x \ge 1000$ • $\left| {x - 1} \right| < 1\,\,\,\,\,\,\, \Leftrightarrow \,\,\,0 < x < 2$ $\begin{array}{l} (1) \Leftrightarrow {\log ^2}x - 2\log x - 3 \le 0\,\,\, \Leftrightarrow \,\, - 1 \le \log x \le 3\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,
\Leftrightarrow \frac{1}{{10}} \le x \le 1000 \end{array}$ Do $0 < x < 2$ nên $\frac{1}{{10}} \le x \le 2$ ĐS: $\left[ \begin{array}{l} \frac{1}{{10}} \le x < 2\\ x \ge 1000 \end{array} \right.$ $2)$$x = 0$ vế trái không xác định $\begin{array}{l} \left| x \right| > 1:(2) \Leftrightarrow {x^2} - 2x \ge 0\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l} x \le 0\\ x \ge 2 \end{array} \right.\\
\end{array}$ Do $\left| x \right| > 1$ nên $\left[ \begin{array}{l} x < - 1\\ x \ge 2 \end{array} \right.$ $\left| x \right| < 1,\,\,x \ne 0\,\,\,(1) \Leftrightarrow {x^2} - 2x \le 0\,\,\, \Leftrightarrow 0 < x \le 2$ Do $\left\{ \begin{array}{l} - 1 < x < 1\\ x \ne 0 \end{array} \right.\,\,\,\,$nên $0 < x < 1$ ĐS : $\left[ \begin{array}{l} x < - 1\\ 0 < x < 1\\ x \ge 2 \end{array} \right.$
|
|
Trả lời 11-07-12 12:40 PM
|
|