|
Đặt $\arctan x=t\Rightarrow x=\tan t$ $\Rightarrow dx=(1+\tan^2t)dt$ Từ đó: $\int h(x)dx=\int\frac{e^t\tan t(1+\tan^2t)dt}{(1+\tan^2t)^{\frac{3}{2}}}$ $=\int\frac{e^t\tan tdt}{\sqrt{1+\tan^2t}}$ $=\int e^t\sin tdt$ $=\frac{(\sin t-\cos t)e^t}{2}+C$ $=\frac{(\tan t-1)e^t}{2\sqrt{1+\tan^2t}}+C$ $=\frac{(x-1)e^{\arctan x}}{2\sqrt{1+x^2}}+C$
|