|
c) $P=\int\frac{\cot x}{1+\sin^9x}dx=\int\frac{\cos xdx}{\sin x(1+\sin^9x)}$ Đặt: $\sin x=t\Rightarrow \cos xdx=dt$ $\Rightarrow P=\int\frac{dt}{t(1+t^9)}$ $=\frac{1}{9}\int\frac{d(t^9)}{t^9(1+t^9)}$ $=\frac{1}{9}\int\left(\frac{d(t^9)}{t^9}-\frac{d(1+t^9)}{1+t^9}\right)$ $=\frac{1}{9}\ln\frac{|t^9|}{|1+t^9|}+C$ $=\frac{1}{9}\ln\frac{|\sin^9x|}{|1+\sin^9x|}+C$
|