Câu 4: $(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)=2(xy+yz+zx)+xyz$$\Rightarrow 2(xy+yz+zx)=(x+y+z)^2-xyz\geq t^2-\frac{t^3}{27} (t=x+y+z\geq 9)$
Ta CM $27t^2-t^3\geq 108t+486$
Xét $f(t)=-t^3+27t^2-108t, t\geq9$
$f'(t)=-3t^2+54t-108=0\Rightarrow t=9\pm 3\sqrt{5}$
Từ BBT $f(t)\geq f(9)=486$ (đpcm)