1. ĐK: $\left\{\begin{array}{l}x-y\ge0\\x+y+2\ge0\end{array}\right.$
Hệ đã cho tương đương với:
$\left\{\begin{array}{l}(x-y)^2=(x-y)^3\\x+y\ge0\\(x+y)^2=x+y+2\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}\left\{\begin{array}{l}x-y=0\\x+y=2\end{array}\right.\\\left\{\begin{array}{l}x-y=1\\x+y=2\end{array}\right.\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}\left\{\begin{array}{l}x=1\\y=1\end{array}\right.\\\left\{\begin{array}{l}x=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{array}\right.\end{array}\right.$