1:$lim(\sqrt{3n-1}-\sqrt{2n-1})=lim\frac{n}{\sqrt{3n-1}+\sqrt{2n-1}}=lim\frac{\sqrt{n}}{\sqrt{3-\frac{1}{n}}+\sqrt{2-\frac{1}{n}}}=+\infty $2,
$lim\sqrt{n}(\sqrt{n-1}-\sqrt{n})=lim\frac{-\sqrt{n}}{\sqrt{n-1}+\sqrt{n}}=\frac{-1}{\sqrt{1-\frac{1}{n}}+1}=\frac{-1}{2}$