+) Π3∫0tan5xd(x)=Π3∫0sin5xcos5xd(x)=Π3∫0(1−cos2x)2sinxcos5xd(x)=Π3∫0−1−2cos2x+cos4xcos5xd(cosx)=Π3∫0(−1cos5x+2cos3x−1cosx)d(cosx)
=(14cos4x−1cos2x−ln|cosx|)=34−ln12
+) 1∫01(x2+3x+2)2d(x)=1∫0(1(x+1)2+1(x+2)2+2x+2−2x+1)d(x)=(−1x+1−1x+2+2ln|x+2|−2ln|x+1|)=23+2ln34