+) $\int\limits_{0}^{\frac{\Pi }{3}}tan^{5}xd(x)=\int\limits_{0}^{\frac{\Pi}{3}}\frac{sin^{5}x}{cos^{5}x}d(x)=\int\limits_{0}^{\frac{\Pi }{3}}\frac{(1-cos^{2}x)^{2}sinx}{cos^{5}x}d(x)$$=\int\limits_{0}^{\frac{\Pi }{3}}-\frac{1-2cos^2x+cos^4x}{cos^5x}d(cosx)=\int\limits_{0}^{\frac{\Pi }{3}}\left ( \frac{-1}{cos^5x}+\frac{2}{cos^3x}-\frac{1}{cosx} \right )d(cosx)$
$=\left ( \frac{1}{4cos^4x}-\frac{1}{cos^2x}-\ln \left| {cosx} \right| \right )=\frac{3}{4}-\ln \frac{1}{2}$
+) $\int\limits_{0}^{1}\frac{1}{\left ( x^2+3x+2 \right )^{2}}d(x)=\int\limits_{0}^{1}\left ( \frac{1}{(x+1)^2}+\frac{1}{(x+2)^2}+\frac{2}{x+2}-\frac{2}{x+1} \right )d(x)=\left ( \frac{-1}{x+1}-\frac{1}{x+2}+2\ln |x+2|-2\ln |x+1| \right )=\frac{2}{3}+2\ln \frac{3}{4}$