ĐK;x≥−1 pt ⇔(9x+12)√6x+8−(19x+26)√x+1≤√(x2+2x−3)3+√x2+2x−3 (1)
Đặt √6x+8=a;√x+1=b⇒9x+12=a2+3b2+1;19x+26=3a2+b2+1
(1) ⇔(a2+3b2+1)a−(3a2+b2+1)b≤√(x2+2x−3)3+√x2+2x−3
⇔(a−b)3+(a−b)≤√(x2+2x−3)3+√x2+2x−3
⇔(a−b−√x2+2x−3)(a−b+(a−b)√x2+2x−3+x2+2x−3+1)
⇔a−b≤√x2+2x−3 do (....)>0
⇔√6x+8−√x+1≤√x2+2x−3
⇔6x+8≤(√x2+2x−3+√x+1)2
⇔(√x2−1−√x+3)(3√x+3+√x2−1)≥0
⇔x2−1≥x+3
⇔x≤1−√172orx≥1+√172
kh vs ĐK ⇒x≥1+√172