ĐK:{x≥0;y≥02x−y>0(*)+)y=0(1)⇔2x+1x=2√2x2(VN)
+)x=0:(1)vô nghiệm
+)x>0;y>0.Đặtt=xy>0
(1)tt:2(√t+1)2+1t+√2t−1=21+√t(2t−1)(1')
Ta có:1t+√2t−1=22t+2√2t−1=2(√2t−1+1)2
(1′)⇔1(√t+1)2+1(√2t−1+1)2=11+√t(2t−1)
Đặt {a=√tb=√2t−1⇒1(a+1)2+1(1+b)2=11+ab
ÁD BĐT BCS:(1+ab)(a+b)≥(√a+√ab.√b)2=a.(1+b)2
⇒1(1+b)2≥aa+b.11+ab
TT⇒VT≥VP
Dấu''='' xra⇔a=b⇔√t=√2t−1⇔x=y
Thay vào(2) :2(x−4)√x−3−(x−6)√2x+1=3(x−2)
Dùng pp liên hợp⇒(x;y)=(4;4)or(x;y)=(12;12)