Tính tổng:1,$S=\frac{C^{12}_{12}}{11.12}+\frac{C^{12}_{13}}{12.13}+...+\frac{C^{12}_{2015}}{2014.2015}+\frac{C^{12}_{2016}}{2015.2016}$2,$S=\frac{-C^{1}_{n}}{2.3}+\frac{2C^{2}_{n}}{3.4}+\frac{-3C^{3}_{n}}{4.5}+...+\frac{(-1)^{n}nC^{n}_{n}}{(n+1)(n+2)}$3,$S=\frac{C^{0}_{n}}{C^{1}_{n+2}}+\frac{C^{1}_{n}}{C^{2}_{n+3}}+...+\frac{C^{k}_{n}}{C^{k+1}_{n+k+2}}+...+\frac{C^{n}_{n}}{C^{n+1}_{2n+2}}$