T9
Let a,b,c be positive real numbers. Prove that:$min\left\{\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2} {};\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{a^2}{ab} \right\}\geq max\left\{\frac{a}{b}+\frac{b}{c}+\frac{c}{a} {};\frac{
a}{c}+\frac{c}{
b}+\frac{
b}{
a} \right\}$
GTLN, GTNN
T9
Let a,b,c be positive real numbers. Prove that:$min\left\{\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2} {};\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{a^2}{ab} \right\}\geq max\left\{\frac{a}{b}+\frac{b}{c}+\frac{c}{a} {};\frac{
b}{c}+\frac{c}{
a}+\frac{
a}{
b} \right\}$
GTLN, GTNN
T9
Let a,b,c be positive real numbers. Prove that:$min\left\{\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2} {};\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{a^2}{ab} \right\}\geq max\left\{\frac{a}{b}+\frac{b}{c}+\frac{c}{a} {};\frac{
a}{c}+\frac{c}{
b}+\frac{
b}{
a} \right\}$
GTLN, GTNN