Giải Hệ PT
1, $\left\{ \begin{array}{l} x+y+x^2+ y^2=8\\ xy(x+1)(y+1)=12 \end{array} \right.$2, $\left\{ \begin{array}{l} 3x+y=\frac{1}{x^{2}}\\ 3y+x=\frac{1}{y^{2}} \end{array} \right.$3, $\left\{ \begin{array}{l} \sqrt[3]{x-y}=\sqrt{x
-y}\\ x+y=\sqrt{x+y+2} \end{array} \right.$4, $\left\{ \begin{array}{l} x+y+\sqrt{x^2-y^{2}}=12\\ y\sqrt{x^2-y^2}=12 \end{array} \right.$5, $\left\{ \begin{array}{l} 2x^2+x-\frac{1}{y}=2\\ y-y^2x-2y^2=-2 \end{array} \right.$
Hệ phương trình
Giải Hệ PT
1, $\left\{ \begin{array}{l} x+y+x^2+ y^2=8\\ xy(x+1)(y+1)=12 \end{array} \right.$2, $\left\{ \begin{array}{l} 3x+y=\frac{1}{x^{2}}\\ 3y+x=\frac{1}{y^{2}} \end{array} \right.$3, $\left\{ \begin{array}{l} \sqrt[3]{x-y}=\sqrt{x
+y}\\ x+y=\sqrt{x+y+2} \end{array} \right.$4, $\left\{ \begin{array}{l} x+y+\sqrt{x^2-y^{2}}=12\\ y\sqrt{x^2-y^2}=12 \end{array} \right.$5, $\left\{ \begin{array}{l} 2x^2+x-\frac{1}{y}=2\\ y-y^2x-2y^2=-2 \end{array} \right.$
Hệ phương trình
Giải Hệ PT
1, $\left\{ \begin{array}{l} x+y+x^2+ y^2=8\\ xy(x+1)(y+1)=12 \end{array} \right.$2, $\left\{ \begin{array}{l} 3x+y=\frac{1}{x^{2}}\\ 3y+x=\frac{1}{y^{2}} \end{array} \right.$3, $\left\{ \begin{array}{l} \sqrt[3]{x-y}=\sqrt{x
-y}\\ x+y=\sqrt{x+y+2} \end{array} \right.$4, $\left\{ \begin{array}{l} x+y+\sqrt{x^2-y^{2}}=12\\ y\sqrt{x^2-y^2}=12 \end{array} \right.$5, $\left\{ \begin{array}{l} 2x^2+x-\frac{1}{y}=2\\ y-y^2x-2y^2=-2 \end{array} \right.$
Hệ phương trình