Tìm max,min
1.Cho
$x>0, y>0. 3(x+y) = 4xy.
$Tìm
$max, min: P= x^{3}+y^{3}+3(\frac{1}{x^{2}}+\frac{1}{y^{2}})
$2. Cho
$a\geqslant 0, b\geqslant 0. \frac{a}{2}+b=1
$Tìm
$max, min: P = \frac{a}{2b+1} + \frac{2b}{a+1}
$
GTLN, GTNN
Tìm max,min
1.Cho x>0, y>0. 3(x+y) = 4xy. Tìm max, min: P= x^{3}+y^{3}+3(\frac{1}{x^{2}}+\frac{1}{y^{2}})2. Cho a\geqslant
0, b\geqslant 0. \frac{a}{2}+b=1Tìm max, min: P = \frac{a}{2b+1} + \frac{2b}{a+1}
GTLN, GTNN
Tìm max,min
1.Cho
$x>0, y>0. 3(x+y) = 4xy.
$Tìm
$max, min: P= x^{3}+y^{3}+3(\frac{1}{x^{2}}+\frac{1}{y^{2}})
$2. Cho
$a\geqslant 0, b\geqslant 0. \frac{a}{2}+b=1
$Tìm
$max, min: P = \frac{a}{2b+1} + \frac{2b}{a+1}
$
GTLN, GTNN