P= $3(\frac{x}{x^{2} +2} +\frac{y}{y^{2} +2} -\frac{z^{2}}{4} )+\frac{(xy-6)^{2} -4(x^{2} +y^{2}+8)}{2(2z^{2}+1)(x+y)^{2}}$
Cho các số thực không âm $x,y,z$ thỏa mãn điều kiện $xy-2(x+y)z -2=0$ tìm max P= $3(\frac{x}{x^{2} +2} +\frac{y}{y^{2} +2} -\frac{z^{2}}{4} )+\frac{(xy-6)^{2} -4(x^{2} +y^{2}+8)}{2(2z^{2}+1)(x+y)^{2}}$
Bất đẳng thức
P= $3(\frac{x}{x^{2} +2} +\frac{y}{y^{2} +2} -\frac{z^{2}}{4} )+\frac{(xy-6)^{2} -4(x^{2} +y^{2}+8)}{2(2z^{2}+1)(x+y)^{2}}$
cho các số thực không âm $x,y,z$ thỏa mãn điều kiện $xy-2(x+y)z -2=0$ tìm max P= $3(\frac{x}{x^{2} +2} +\frac{y}{y^{2} +2} -\frac{z^{2}}{4} )+\frac{(xy-6)^{2} -4(x^{2} +y^{2}+8)}{2(2z^{2}+1)(x+y)^{2}}$
Bất đẳng thức
P= $3(\frac{x}{x^{2} +2} +\frac{y}{y^{2} +2} -\frac{z^{2}}{4} )+\frac{(xy-6)^{2} -4(x^{2} +y^{2}+8)}{2(2z^{2}+1)(x+y)^{2}}$
Cho các số thực không âm $x,y,z$ thỏa mãn điều kiện $xy-2(x+y)z -2=0$ tìm max P= $3(\frac{x}{x^{2} +2} +\frac{y}{y^{2} +2} -\frac{z^{2}}{4} )+\frac{(xy-6)^{2} -4(x^{2} +y^{2}+8)}{2(2z^{2}+1)(x+y)^{2}}$
Bất đẳng thức