Đặt \(t = \frac{\pi }{2} - x\), ta có:\(I = \int\limits_0^{\pi /2}
{\dfrac{{4\sin xdx}}{{{{\left( {\sin x + \cos x} \right)}^3}}} =
\int\limits_{\pi /2}^0 {\dfrac{{4\cos t\left( { - dt}
\right)}}{{{{\left( {\sin t + \cos t} \right)}^3}}} = \int\limits_0^{\pi
/2} {\dfrac{{4\cos xdx}}{{{{\left( {\sin x + \cos x} \right)}^3}}}} } }
\)\( \Rightarrow 2I = \int\limits_0^{\pi /2}
{\dfrac{{4dx}}{{{{\left( {\sin x + \cos x} \right)}^2}}}} =
2\int\limits_0^{\pi /2} {\dfrac{{dx}}{{\cos{^2}\left( {x -
\frac{\pi }{4}} \right)}}\\ = 2\tan\left( {x - \frac{\pi
}{4}} \right)} \left| {_0^{\pi /2}} \right. = 2\,.\,2 = 4\)\(\Rightarrow I = 2\)
Đặt \(t = \frac{\pi }{2} - x\), ta có:\(I = \int\limits_0^{\pi /2}
{\dfrac{{4\sin dx}}{{{{\left( {\sin x + \cos x} \right)}^3}}} =
\int\limits_{\pi /2}^0 {\dfrac{{4\cos t\left( { - dt}
\right)}}{{{{\left( {\sin t + \cos t} \right)}^3}}} = \int\limits_0^{\pi
/2} {\dfrac{{4\cos xdx}}{{{{\left( {\sin x + \cos x} \right)}^3}}}} } }
\)\( \Rightarrow 2I = \int\limits_0^{\pi /2}
{\dfrac{{4dx}}{{{{\left( {\sin x + \cos x} \right)}^2}}}} =
2\int\limits_0^{\pi /2} {\dfrac{{dx}}{{\cos{^2}\left( {x -
\frac{\pi }{4}} \right)}}\\ = 2\tan\left( {x - \frac{\pi
}{4}} \right)} \left| {_0^{\pi /2}} \right. = 2\,.\,2 = 4\)\(\Rightarrow I = 2\)
Đặt \(t = \frac{\pi }{2} - x\), ta có:\(I = \int\limits_0^{\pi /2}
{\dfrac{{4\sin
xdx}}{{{{\left( {\sin x + \cos x} \right)}^3}}} =
\int\limits_{\pi /2}^0 {\dfrac{{4\cos t\left( { - dt}
\right)}}{{{{\left( {\sin t + \cos t} \right)}^3}}} = \int\limits_0^{\pi
/2} {\dfrac{{4\cos xdx}}{{{{\left( {\sin x + \cos x} \right)}^3}}}} } }
\)\( \Rightarrow 2I = \int\limits_0^{\pi /2}
{\dfrac{{4dx}}{{{{\left( {\sin x + \cos x} \right)}^2}}}} =
2\int\limits_0^{\pi /2} {\dfrac{{dx}}{{\cos{^2}\left( {x -
\frac{\pi }{4}} \right)}}\\ = 2\tan\left( {x - \frac{\pi
}{4}} \right)} \left| {_0^{\pi /2}} \right. = 2\,.\,2 = 4\)\(\Rightarrow I = 2\)