a. $y'=3(2 +2\sin^2 x)^2 .(2\sin^2 2x)'=6(2 +2\sin^2 x)^2.2\sin 2x .2\cos 2x=12(2+2\sin^2 2x)^2.\sin 4x$c. $y'=4\sin 4x .4\cos 4x+3.3\cos^2 5x .5\sin 5x=8\sin 8x +45\sin 5x \cos^2 5x$
a. $y'=3(2 +2\sin^2 x)^2 .(\sin^2 2x)'=3(2 +2\sin^2 x)^2.2\sin 2x .2\cos 2x=6(2+2\sin^2 2x)^2.\sin 4x$c. $y'=4\sin 4x .4\cos 4x+\cos^2 5x .5\sin 5x=8\sin 8x +5\sin 5x \cos^2 5x$
a. $y'=3(2 +2\sin^2 x)^2 .(
2\sin^2 2x)'=
6(2 +2\sin^2 x)^2.2\sin 2x .2\cos 2x=
12(2+2\sin^2 2x)^2.\sin 4x$c. $y'=4\sin 4x .4\cos 4x+
3.3\cos^2 5x .5\sin 5x=8\sin 8x +
45\sin 5x \cos^2 5x$