a) △AHB∼△BCD (g.g)Vì: ^ABH=^BDC (sole trong)^AHB=^BCD=90o.b) BD=√BC2+AB2=15. (cm)$\triangle AHD \sim \triangle BHA(g.g)Vì: \widehat{DAH}=\widehat{ABD} (cùng cộng với \widehat{ADB}=90^o)\widehat{AHD}=\widehat{AHB}=90^o$$\Rightarrow \frac{AB}{BD}=\frac{AH}{AD}\Rightarrow AH=\frac{AB.AD}{BD}=\frac{12.9}{15}=7,2$ $(cm)$c) $S_{ABC}=\frac{1}{2}.AB.BC=54$ $(cm^2)$
a) \triangle AHB\sim \triangle BCD (g.g)Vì: \widehat{ABH}=\widehat{BDC} (sole trong)\widehat{AHB}=\widehat{BCD}=90^o.b) BD=\sqrt{BC^2+AB^2}=15. (cm)$\triangle AHD \sim \triangle BAD (g.g)Vì: \widehat{DAH}=\widehat{ABD} (cùng cộng với \widehat{ADB}=90^o)\widehat{AHD}=\widehat{DAB}=90^o$$\Rightarrow \frac{AB}{BD}=\frac{AH}{AD}\Rightarrow AH=\frac{AB.AD}{BD}=\frac{12.9}{15}=7,2$ $(cm)$c) $S_{ABC}=\frac{1}{2}.AB.BC=54$ $(cm^2)$