|
|
|
|
sửa đổi
|
Bất đẳng thức khó
|
|
|
Đơn giản lm =)) Cơ mà mk ng u lm nên k pit giải => AI giúp đuy ạCho bộ số : $x_{1} ; x_{2} ; ...; x_{n-1} x_{n} + x_{n} x_{1} $ CÓ S= $x_{1} + x_{2} + ...+ x_{n} $Có tổng : $x_{1} x_{2} + x_{2} x_{3} + ... + x_{n-1} x_{n} + x_{n} x_{1} = 1 $CMR :$ \frac{{x_{1}}^{2}}{S-x_{1}} + \frac{x^{2}_{2}}{S-x_{2}} + ...+ \frac{x^{2}_{n}}{S-x_{n}} \geq \frac{1}{n-1} $
Bất đẳng t hức khóCho bộ số : $x_{1} ; x_{2} ; ...; x_{n-1} x_{n} + x_{n} x_{1} $ CÓ S= $x_{1} + x_{2} + ...+ x_{n} $Có tổng : $x_{1} x_{2} + x_{2} x_{3} + ... + x_{n-1} x_{n} + x_{n} x_{1} = 1 $CMR :$ \frac{{x_{1}}^{2}}{S-x_{1}} + \frac{x^{2}_{2}}{S-x_{2}} + ...+ \frac{x^{2}_{n}}{S-x_{n}} \geq \frac{1}{n-1} $
|
|
|
|
|
|
giải đáp
|
giúp với ạ
|
|
|
Cách 2 : Lượng giác hóa Đặt : $x=cotA;y=cotB;z=cotC ( A,B,C \in (0; \frac{\pi}{2}))$ $gt \Leftrightarrow tanAtanB+tanBtanC+tanCtanA=1$ $\Leftrightarrow tan(tanB+tanC)=1-tanBtanC$ $\Leftrightarrow tân=\frac{1-tanBtanC}{tanB+tanC}=cot(B+C) <=> A+B+C= \frac{\pi}{2}$
$=> VT= \frac{1}{\sqrt{1+cot^{2}A}}+\frac{1}{\sqrt{1+cot^{2}B}}+ \frac{1}{\sqrt{1+cot^{2}C}}=sinA+sinB+sinC $ Theo lg có : $\frac{sinA+sinB+sinC}{3} \leq sin \frac{A+C+B}{3}=sin \frac{\pi}{6}=1/2$ $=>sinA+sinB+sinC \leq 3/2$ Vậy Max=3/2 <=> $x=y=z=\sqrt{3}$
|
|
|
|
sửa đổi
|
Hỏi bất phương trình!
|
|
|
Hỏi bất phương trình! Cho 3 số thực x,y,z thỏa:\begin{cases}x,y,z \geqslant 0 \\ 4(x^{3}+y^{3}) +z^{3}=2(x+y+z)(xy+yz-2) \end{cases}Tìm max của $P = \frac{2x^{2}}{3x^{2}+y{2}+2x(z+2)} + \frac{y+z}{x+y+z+2} - \frac{(x+y)^{2}+z^{2}}{16}$
Hỏi bất phương trình! Cho 3 số thực x,y,z thỏa:\begin{cases}x,y,z \geqslant 0 \\ 4(x^{3}+y^{3}) +z^{3}=2(x+y+z)(xy+yz-2) \end{cases}Tìm max của $P = \frac{2x^{2}}{3x^{2}+y ^{2}+2x(z+2)} + \frac{y+z}{x+y+z+2} - \frac{(x+y)^{2}+z^{2}}{16}$
|
|
|
bình luận
|
Bài 2 em bảo s (x;y)=(0;0) lại là n đc
|
|
|
|
|
|
bình luận
|
BĐT số 2 bài nào v :V bà up cái link tui coi vs
|
|
|
|
|
|
|
sửa đổi
|
THƯ GIÃN TÂM HỒN TÔI
|
|
|
Cách 2 : Với mỗi $y,z$ cố định $\in [0;1]$ , xét hàm số biến x : $F9x)=\frac{x}{y+z+1}+\frac{y}{z+x+1}+ \frac{z}{x+y+1}+(1-x)(1-y)(1-z) , 0 \leq x \leq 1$Có : $F'(x)= \frac{1}{y+z+1}-\frac{y}{(z+x+1)^{2}}- \frac{z}{(x+y+1)^{2}}-(1-y)(1-z)$$=> F''(x)= \frac{2y}{(z+x+1)^{2}}+ \frac{2z}{(x+y+1)^{2}} \geq 0 $ (do y,z >=0 )=> F''(x) là hàm đồng biến khi $o \leq x\leq 1$=> 3 TH : TH 1 : Nếu $F'(x) >=0 \forall 0\leq x \leq 1$ . Khi đó F(x) là hàm đồng biến trên $0 \leq x \leq 1$ , $=> \forall 0\leq x \leq 1$ , ta có : $F(x) \leq F(1) = \frac{1}{y+z+1}+ \frac{y}{z+1+1}+ \frac{z}{1+y+1} \leq \frac{1+y+z}{y+z+1}=1 ( do y \leq 1; z \leq 1)$TH2 : Nếu $F'(x) \leq 0 \forall 0\leq x\leq 1$ Khi đó F(x) là hàm nb trên $0=<x=<1$ => Ta có : $F(x) \leq F(0) =\frac{y}{z+1}+ \frac{z}{y+1}+(1-y)(1-z)= \frac{1+y+z+y^{2}z^{2}}{1+y+z+yz}$Do : $y^{2}z^{2} \leq yz $ và $y,z \in [0;1]=>F(x) \leq 1 \forall x \in [0;1]$TH3 : Nếu F'(x) có dấu thay đổi trên $[0;1]$ . Do $F'(x) $ là hàm đb trên $[0;1]$ Và : $F(0) \leq 1 ; F(1) \leq 1=> F(x) \leq 1 \forall 0\leq x\leq 1$ALL=> luôn có : $P \leq 1$Vậy Max P = 1
Cách 2 : Với mỗi $y,z$ cố định $\in [0;1]$ , xét hàm số biến x : $F(x)=\frac{x}{y+z+1}+\frac{y}{z+x+1}+ \frac{z}{x+y+1}+(1-x)(1-y)(1-z) , 0 \leq x \leq 1$Có : $F'(x)= \frac{1}{y+z+1}-\frac{y}{(z+x+1)^{2}}- \frac{z}{(x+y+1)^{2}}-(1-y)(1-z)$$=> F''(x)= \frac{2y}{(z+x+1)^{2}}+ \frac{2z}{(x+y+1)^{2}} \geq 0 $ (do y,z >=0 )=> F''(x) là hàm đồng biến khi $o \leq x\leq 1$=> 3 TH : TH 1 : Nếu $F'(x) >=0 \forall 0\leq x \leq 1$ . Khi đó F(x) là hàm đồng biến trên $0 \leq x \leq 1$ , $=> \forall 0\leq x \leq 1$ , ta có : $F(x) \leq F(1) = \frac{1}{y+z+1}+ \frac{y}{z+1+1}+ \frac{z}{1+y+1} \leq \frac{1+y+z}{y+z+1}=1 ( do y \leq 1; z \leq 1)$TH2 : Nếu $F'(x) \leq 0 \forall 0\leq x\leq 1$ Khi đó F(x) là hàm nb trên $0= Ta có : $F(x) \leq F(0) =\frac{y}{z+1}+ \frac{z}{y+1}+(1-y)(1-z)= \frac{1+y+z+y^{2}z^{2}}{1+y+z+yz}$Do : $y^{2}z^{2} \leq yz $ và $y,z \in [0;1]=>F(x) \leq 1 \forall x \in [0;1]$TH3 : Nếu F'(x) có dấu thay đổi trên $[0;1]$ . Do $F'(x) $ là hàm đb trên $[0;1]$ Và : $F(0) \leq 1 ; F(1) \leq 1=> F(x) \leq 1 \forall 0\leq x\leq 1$ALL=> luôn có : $P \leq 1$Vậy Max P = 1
|
|
|
giải đáp
|
THƯ GIÃN TÂM HỒN TÔI
|
|
|
Cách 2 : Với mỗi $y,z$ cố định $\in [0;1]$ , xét hàm số biến x : $F(x)=\frac{x}{y+z+1}+\frac{y}{z+x+1}+ \frac{z}{x+y+1}+(1-x)(1-y)(1-z) , 0 \leq x \leq 1$ Có : $F'(x)= \frac{1}{y+z+1}-\frac{y}{(z+x+1)^{2}}- \frac{z}{(x+y+1)^{2}}-(1-y)(1-z)$ $=> F''(x)= \frac{2y}{(z+x+1)^{2}}+ \frac{2z}{(x+y+1)^{2}} \geq 0 $ (do y,z >=0 ) => F''(x) là hàm đồng biến khi $o \leq x\leq 1$ => 3 TH : TH 1 : Nếu $F'(x) >=0 \forall 0\leq x \leq 1$ . Khi đó F(x) là hàm đồng biến trên $0 \leq x \leq 1$ , $=> \forall 0\leq x \leq 1$ , ta có : $F(x) \leq F(1) = \frac{1}{y+z+1}+ \frac{y}{z+1+1}+ \frac{z}{1+y+1} \leq \frac{1+y+z}{y+z+1}=1 ( do y \leq 1; z \leq 1)$ TH2 : Nếu $F'(x) \leq 0 \forall 0\leq x\leq 1$ Khi đó F(x) là hàm nb trên $0= Ta có : $F(x) \leq F(0) =\frac{y}{z+1}+ \frac{z}{y+1}+(1-y)(1-z)= \frac{1+y+z+y^{2}z^{2}}{1+y+z+yz}$ Do : $y^{2}z^{2} \leq yz $ và $y,z \in [0;1]=>F(x) \leq 1 \forall x \in [0;1]$ TH3 : Nếu F'(x) có dấu thay đổi trên $[0;1]$ . Do $F'(x) $ là hàm đb trên $[0;1]$ Và : $F(0) \leq 1 ; F(1) \leq 1=> F(x) \leq 1 \forall 0\leq x\leq 1$ ALL=> luôn có : $P \leq 1$ Vậy Max P = 1
Bài toán tổng quát : Cho $0\leq a_{i} \leq 1 , i=1,2,...,n$ . Chứng minh rằng : $\frac{a_{1}}{S-a_{1}+1}+ \frac{a_{2}}{S-a_{2}+1}+...+ \frac{a_{n}}{S-a_{n}+1}+ (1-a_{1})(1-a_{2})...(1-a_{n}) \leq 1$ Với : $S=a_{1}+a_{2}+...+a_{n}$
|
|