BÀI 1: cho $x^2+y^2+z^2=1$ và $x,y,z >0$..tìm giá trị nhỏ nhất của $p=\frac x{(y^2+z^2)}+\frac y{(x^2+z^2)}+\frac z{(x^2+y^2)}$
BÀI 2:cho $x,y,z>0$ và $x+y+z=1$.tìm GTNN của $p= \frac{(x+y)}{\sqrt{(xy+z)}} + \frac{( y+z)}{\sqrt{yz+x}} + \frac{(x+z)}{\sqrt{(zx+y)}}$
BÀI 3: cho $x,y,z>0$ và $xyz=1$. tìm GTNN của $p=\frac{\sqrt{ 1+x^2+y^2}}{xy} + \frac{\sqrt{1+y^2+z^2}}{yz} + \frac{\sqrt{1+x^2+z^2}}{xz}$