P=12+3yx+11+zy+11+xzDox≥y⇒xy≥1ÁD BĐT11+zy+11+xz≥21+√xy ⇒P≥12+3yx+21+√xyĐặtt=√xy(tϵ[1;2])⇒P≥t22t2+3+21+t=f(t)f′(t)=6t(2t2+3)2−2(t+1)2≤0,tϵ[1;2]⇒minf(t)=f(2)=3433Dấu''='' xra⇔x=4;y=1;z=2
P=12+3yx+11+zy+11+xzDox≥y⇒xy≥1ÁD BĐT11+zy+11+xz≥21+√xy Đặtt=√xy(tϵ[1;2])⇒P≥t22t2+3+21+t=f(t)$f'(t)= \frac{6t}{(2t^{2}+3)^{2}}-\frac{2}{(t+1)^{2}}\leq0,t\epsilon \left[ {1;2} \right]$$\Rightarrow min f(t)=f(2)=\frac{34}{33}$Dấu''='' xra$\Leftrightarrow x=4;y=1;z=2$