|
giải đáp
|
Mn giúp mk với
|
|
|
3)ĐK:$sin x+cos x+2\neq0$(luôn đúng) $y=\frac{cos x+2}{sin x+cos x+2}\Leftrightarrow y.sin x+(y-1) cos x+2y-2=0$(1) (1) có nghiệm$\Leftrightarrow y^{2}+(y-1)^{2}\geq (2-2y)^{2}$ $\Leftrightarrow 2y^{2}-6y+3\leq0$ $\Leftrightarrow \frac{3-\sqrt{3}}{2}\leq y\leq \frac{3+\sqrt{3}}{2}$ Bạn tự tìm dấu ''='' xra cho Min,Max nha:D
|
|
|
|
|
sửa đổi
|
ai trả lời giúp
|
|
|
ai trả lời giúp Tại sao : $\mathop {\lim }\limits_{x \to -\infty }(x+\sqrt{x^2+1})=\mathop {\lim }\limits_{x \to -\infty }\frac{1}{x-\sqrt{x^2 -1}} =0$Mà sao không phải là: $=\mathop {\lim }\limits_{x \to -\infty }\left| {x} \right|(1+\sqrt{1+\frac{1}{x^2}})=-\infty $
ai trả lời giúp Tại sao : $\mathop {\lim }\limits_{x \to -\infty }(x+\sqrt{x^2+1})=\mathop {\lim }\limits_{x \to -\infty }\frac{1}{x-\sqrt{x^2 +1}} =0$Mà sao không phải là: $=\mathop {\lim }\limits_{x \to -\infty }\left| {x} \right|(1+\sqrt{1+\frac{1}{x^2}})=-\infty $
|
|
|
giải đáp
|
Cho e 3 cách lm ạ ..... Thaks nhiều
|
|
|
C1:Ta CM: $\frac{a}{\sqrt{b+c}}+\frac{b}{\sqrt{a+c}}+\frac{c}{\sqrt{a+b}}\geq\sqrt{\frac{3}{2}(a+b+c)}\geq\frac{1}{\sqrt{2}}(\sqrt{a}+\sqrt{b}+\sqrt{c})$ +)$\Sigma \frac{a}{\sqrt{b+c}}\geq\sqrt{\frac{3}{2}(a+b+c)}$(1)
Do tính thuần nhất của BĐT,ta chuẩn hóa:$a+b+c=\frac{3}{2}$ Ta cần CM:$\Sigma \frac{a}{\sqrt{b+c}}\geq\frac{3}{2}$ ÁD BĐT C-S:$VT\geq\frac{(a+b+c)^{2}}{\Sigma a\sqrt{b+c}}=\frac{9}{4(\Sigma a\sqrt{b+c})}$ Ta chỉ cần CM:$\Sigma a\sqrt{b+c}\leq \frac{3}{2}$ Thật vậy:ÁD BĐT C-S:$a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\leq\sqrt{(a+b+c)\left[ {a(b+c)+b(c+a)+c(a+b)} \right]}$ =$\sqrt{3(ab+bc+ca)}\leq a+b+c=\frac{3}{2}$ $\Rightarrow $(1) đúng(*) +)ÁD BĐT Bunhiacopxki::$\sqrt{3(a+b+c)}\geq\Sigma \sqrt{a}$ $\Rightarrow$(2) đúng(**) Từ (*)&(**)$\Rightarrow đpcm$
|
|
|
được thưởng
|
Đăng nhập hàng ngày 04/07/2016
|
|
|
|
|
|
giải đáp
|
Hệ PT
|
|
|
Use máy tính ta mò đc nhân tử $2x-y-1=0$:)) ĐK:$x\geq \frac{1}{2};y\geq0$(*) pt(2)$\Leftrightarrow (2x-y-1)^{2}\left[ {1+\frac{2y}{(y+\sqrt{y(2x-1)})^{2}}} \right]=0$ $\Leftrightarrow 2x=y+1$ (1)tt$(3+2y)(2\sqrt{y+2}-3)-(2y+1)(2\sqrt{y}-1)+4y-1=0$ $\Leftrightarrow (4y-1)(\frac{3+2y}{2\sqrt{y+2}+3}-\frac{2y+1}{2\sqrt{y}+1}+1)=0$(3) Dễ dàng CM$\left[ {...} \right]>0$ $(3)\Leftrightarrow y=\frac{1}{4}\Rightarrow x=\frac{5}{8}(t/m(*))$
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 03/07/2016
|
|
|
|
|
|
bình luận
|
bdt có đk j của xy k bn?:D
|
|
|
|
|
|
sửa đổi
|
cần giúp đỡ thanks.
|
|
|
cần giúp đỡ thanks. trong mặt phẳng với hệ tọa độ oxy, cho hình chữ nhật ABCD, có AD=2AB. điểm H(\frac{31}{5};\frac{17}{5}) là điểm đối xứng của điểm B qua dường chéo AC. tìm tọa độ các đỉnh của hình chữ nhật. biết pt CD:x-y-10=0 và c có tung độ âm
cần giúp đỡ thanks. trong mặt phẳng với hệ tọa độ oxy, cho hình chữ nhật ABCD, có AD=2AB. điểm $ H(\frac{31}{5};\frac{17}{5}) $là điểm đối xứng của điểm B qua dường chéo AC. tìm tọa độ các đỉnh của hình chữ nhật. biết pt CD:x-y-10=0 và c có tung độ âm
|
|
|
được thưởng
|
Đăng nhập hàng ngày 02/07/2016
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 01/07/2016
|
|
|
|
|
|
giải đáp
|
phân tích giải theo hướng hằng đẳng thức hộ vs nhé các bn!!!
|
|
|
ĐK:$x\geq-1$(*) pt$\Leftrightarrow (2x+4-6\sqrt{2x+4}+9)-(x+1-4\sqrt{x+1}+4)=0$ $\Leftrightarrow (\sqrt{2x+4}-3)^{2}-(\sqrt{x+1}-2)^{2}=0$ $\Leftrightarrow (\sqrt{2x+4}-\sqrt{x+1}-1)(\sqrt{2x+4}+\sqrt{x+1}-5)=0$ TH1:$\sqrt{2x+4}=\sqrt{x+1}+1$ $\Leftrightarrow x=0(t/m)$ TH2:$\sqrt{2x+4}=5-\sqrt{x+1}$ $\Leftrightarrow x=72-40\sqrt{3}(t/m)$ KL:...
|
|
|