|
Ta có: $\sum_{i=1}^{n}i^3=\Big(\frac{n(n+1)}{2}\Big)^2$ $\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6}$ Ta có: $\sum_{i=1}^{100}iC_{i+1}^2=\sum_{i=1}^{100}\frac{i^2(i+1)}{2}$ $=\frac{1}{2}\sum_{i=1}^{100}i^3+\frac{1}{2}\sum_{i=1}^{100}i^2$ $=\frac{1}{2}.\Big(\frac{100.101}{2}\Big)^2+\frac{1}{2}.\frac{100.101.201}{6}=12920425$
|