|
Ta có: $\int f(x)dx=\int\frac{2\sqrt2(x^2-1)}{x^4+1}dx$ $=\int\frac{(x^2+\sqrt2x+1)(2x-\sqrt2)-(x^2-\sqrt2x+1)(2x+\sqrt2)}{(x^2+\sqrt2x+1)(x^2-\sqrt2x+1)}dx$ $=\int\frac{2x-\sqrt2}{x^2-\sqrt2x+1}dx-\int
\frac{2x+\sqrt2}{x^2+\sqrt2x+1}dx $ $=\int\frac{d(x^2-\sqrt2x+1)}{x^2-\sqrt2x+1}- \int\frac{d(x^2+\sqrt2x+1)}{x^2+\sqrt2x+1} $ $=\ln(x^2-\sqrt2x+1)-\ln(x^2+\sqrt2x+1)+C$ $=\ln\frac{x^2-\sqrt2x+1}{x^2+\sqrt2x+1}+C$, đpcm.
|