|
Ta có: $(1+x)^n =\sum_{i=0}^nC^i_nx^i$ $\Rightarrow n(1+x)^{n-1}=\sum_{i=1}^{n}iC^i_nx^{i-1}$ $\Rightarrow nx(1+x)^{n-1}=\sum_{i=1}^{n}iC^i_nx^i $ $\Rightarrow n(1+x)^{n-1}+n(n-1)x(1+x)^{n-2}=\sum_{i=1}^ni^2C^i_nx^{i-1}$ Thay $x=1$, ta được: $ S=1^2C^1_n+2^2C^2_n+3^2C^3_n+....+n^2C^n_n=n.2^{n-1}+n(n-1)2^{n-2}$
|