|
Vì $0\le\sin^2x,\cos^2x\le1$, ta có: $11\cos^{2008}x\le11\cos^2x\le2012\cos^2x$ $2012\sin^{2010}x\le2012\sin^2x$ Suy ra: $11\cos^{2008}x+2012\sin^{2012}x\le 2012(\sin^2x+\cos^2x)=2012$ Dấu bằng xảy ra khi: $\left\{ \begin{array}{l} \cos x=0\\\sin^2x=1 \end{array} \right.\Leftrightarrow x=\frac{\pi}{2}+k\pi,k\in\mathbb{Z}$
|