|
a. Đặt u=cosn−1x,dv=cosxdx ⇒du=−(n−1)cosn−2xsinxdx,v=sinx ⇒In=cosn−1xsinx|π20+(n−1)π2∫0cosn−2x(1−cos2x)dx =(n−1)In−1−(n−1)In⇒In=n−1nIn−2 Ta có: I0=π2∫0dx=π2⇒I2m=2m−12m.2m−32m−2…34.12.π2=(2m−1)!!(2m)!!.π2 I1=π2∫0cosxdx=1⇒I2m+1=2m2m+1.2m−22m−1…23.1=(2m)!!(2m+1)!! Từ đó: In={(n−1)!!n!!.π2nếu n chẵn(n−1)!!n!!nếu n lẻ
|