|
Áp dụng BĐT Bunhia ta có: $\left(\frac{a}{\sqrt{a+b}}+\frac{b}{\sqrt{b+c}}+\frac{c}{\sqrt{c+a}}\right)^2\le(a+b+c)\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)$ Ta chỉ cần chứng minh: $P=abc(a+b+c)\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\le1$ Ta có: $\frac{a^2bc(a+b+c)}{a+b}=a^2bc+\frac{a^2bc^2}{a+b}$ $\le a^2bc+\frac{a^2bc^2}{4}\left(\frac{1}{a}+\frac{1}{b}\right)$ $=a^2bc+\frac{abc^2}{4}+\frac{a^2c^2}{4}$ Từ đó suy ra: $P=abc(a+b+c)\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)$ $\le a^2bc+ab^2c+abc^2+\frac{a^2bc}{4}+\frac{ab^2c}{4}+\frac{abc^2}{4}+\frac{a^2b^2}{4}+\frac{b^2c^2}{4}+\frac{a^2c^2}{4}$ $\le a^2bc+ab^2c+abc^2+\frac{a^2b^2}{2}+\frac{b^2c^2}{2}+\frac{a^2c^2}{2}$ $=\frac{(ab+bc+ca)^2}{2}=1$, đpcm.
|