|
Điều kiện: $\cos x\ne0\Leftrightarrow x\ne\frac{\pi}{2}+k\pi,k\in\mathbb{Z}$ Đặt: $\tan^2x=t,(t\ge0)$ ta có: $3(2-t)^4+4t^3=7$ $\Leftrightarrow 3t^4-20t^3+72t^2-96t+41=0$ $\Leftrightarrow (t-1)^2(3t^2-14t+41)=0$ $\Leftrightarrow t=1$ Suy ra: $\tan^2x=1\Leftrightarrow x=\pm\frac{\pi}{4}+k\pi,k\in\mathbb{Z}$, thỏa mãn...
|