|
1. Điều kiện: $\left\{ \begin{array}{l} x>0\\10\log_2x+6\ge0 \end{array} \right.\Leftrightarrow x\ge\frac{1}{\sqrt[5]{8}}$. Đặt: $t=\log_2x$, ta có: $t+\sqrt{10t+6}=0$ $\Leftrightarrow \sqrt{10t+6}=-t$ $\Leftrightarrow \left\{ \begin{array}{l} t\le0\\10t+6=t^2 \end{array} \right.$ $\Leftrightarrow t=5-\sqrt{31}$ $\Leftrightarrow x=2^{5-\sqrt{31}}$, thỏa mãn.
|