|
Bài toán sẽ được chứng minh nếu ta có: $\left( 1+\frac{1}{n}\right)^n<\left( 1+\frac{1}{n+1}\right)^{n+1}$ $\Leftrightarrow \frac{(n+1)^n}{n^n}<\frac{(n+2)^{n+1}}{(n+1)^{n+1}}$ $\Leftrightarrow (n+1)^{2n+1}<n^n(n+2)^{n+1}$ Ta có $(n+1)^2<n(n+1)$ nên $(n+1)^{2n+1}<n^n(n+2)^n(n+1)<n^n(n+2)^{n+1}$. (đpcm)
|