|
Áp dụng BĐT Cauchy ta có: $1+\frac{1}{a}=\frac{a+1}{a}=\frac{a+a+b+c}{a}\ge\frac{4\sqrt[4]{a^2bc}}{a}$ Tương tự: $1+\frac{1}{b}\ge\frac{4\sqrt[4]{ab^2c}}{b},1+\frac{1}{c}\ge\frac{4\sqrt[4]{abc^2}}{c}$ Suy ra: $(1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})\ge64$ Dấu bằng xảy ra khi: $a=b=c=\frac{1}{3}$.
|