|
Ta có: $y=\frac{\cos x+2}{\cos x+\sin x-2}$ $\Leftrightarrow y(\sin x+\cos x-2)=\cos x+2$ $\Leftrightarrow y\sin x+(y-1)\cos x=2y+2$ Suy ra: $(2y+2)^2=[y\sin x+(y-1)\cos x]^2$ $\le [y^2+(y-1)^2][\sin^2x+\cos^2x]$ $\Rightarrow (2y+2)^2\le y^2+(y-1)^2$ $\Leftrightarrow 2y^2+10y+3\le0$ $\Leftrightarrow \frac{-5-\sqrt{19}}{2}\le y\le\frac{-5+\sqrt{19}}{2}$ Vậy: Min$y=\frac{-5-\sqrt{19}}{2}$ Max$y=\frac{-5+\sqrt{19}}{2}$
|