|
Ta có: CknCk+1n+k+2=n!(k+1)!(n+1)!k!(n−k)!(n+k+2)!=n!(n+1)!(2n+1)!.(k+1)(2n+1)!(n+k+2)!(n−k)!=1Cn2n+1.(k+1)(2n+1)!(n+k+2)!(n−k)!. Lại có: (k+1)(2n+1)!(n+k+2)!(n−k)!=[(n+k+2)−(n−k)](2n+1)!2(n+k+2)!(n−k)!=(2n+1)!2(n+k+1)!(n−k)!−(2n+1)!2(n+k+2)!(n−k−1)!=Cn+k+12n+1−Cn+k+22n+12 Từ đó suy ra: CknCk+1n+k+2=12Cn2n+1(Cn+k+12n+1−Cn+k+22n+1). Lấy tổng theo k từ 0 đến n ta được: S=12Cn2n+1(Cn+12n+1−C2n+22n+1)=12.
|