|
Phương trình tương đương với: $3-4\sin^22x=2\cos2x(1+2\sin x)$ $\Leftrightarrow 1+2(1-2\sin^22x)-2\cos 2x-4\cos 2x\sin x=0$ $\Leftrightarrow 1+2(\cos4x-\cos2x)-2(\sin3x-\sin x)=0$ $\Leftrightarrow 1-4\sin3x\sin x-2\sin 3x+2\sin x=0$ $\Leftrightarrow (1+2\sin x)(1-2\sin3x)=0$ $\Leftrightarrow \left[ \begin{array}{l} \sin x=\frac{-1}{2}\\\sin3x=\frac{1}{2} \end{array} \right.$ $\Leftrightarrow \left[ \begin{array}{l} x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\\x=\frac{\pi}{18}+k\frac{2\pi}{3}\\x=\frac{5\pi}{18}+k\frac{2\pi}{3} \end{array} \right.,k\in\mathbb{Z}$
|