|
Đặt: $I=\int\limits_{-1/2}^{1/2}\cos x\ln\frac{1-x}{1+x}dx$ Đặt: $x=-t\Rightarrow dx=-dt$ Ta có: $I=-\int\limits_{1/2}^{-1/2}\cos(-t)\ln\frac{1+t}{1-t}dt$ $=\int\limits_{-1/2}^{1/2}\cos t\ln\frac{1+t}{1-t}dt$ $=-\int\limits_{-1/2}^{1/2}\cos t\ln\frac{1-t}{1+t}dt=-I$ Suy ra: $2I=0\Leftrightarrow I=0$
|