|
Đặt $I=\int\limits_0^{\pi/2}\frac{\sin^3x}{\sin^3x+\cos^3x}dx,J=\int\limits_0^{\pi/2}\frac{\cos^3x}{\sin^3x+\cos^3x}dx$ Đặt: $x=\frac{\pi}{2}-t\Rightarrow dx=-dt$ Ta có: $I=-\int\limits_{\pi/2}^0\frac{\sin^3(\displaystyle\frac{\pi}{2}-t)}{\sin^3(\displaystyle\frac{\pi}{2}-t)+\cos^3(\displaystyle\frac{\pi}{2}-t)}dt$ $=\int\limits_0^{\pi/2}\frac{\cos^3t}{\sin^3t+\cos^3t}dt=J$ Mà ta có: $I+J=\int\limits_0^{\pi/2}dx=\frac{\pi}{2}$ Suy ra: $I=J=\frac{\pi}{4}$
|