|
Đặt $I=\int\limits_0^{\pi/2}\frac{\sin x}{\sin x+\cos x}dx,J=\int\limits_0^{\pi/2}\frac{\cos x}{\sin x+\cos x}dx$ Đặt: $x=\frac{\pi}{2}-t\Rightarrow dx=-dt$ Ta có: $I=-\int\limits_{\pi/2}^0\frac{\sin(\displaystyle\frac{\pi}{2}-t)}{\sin(\displaystyle\frac{\pi}{2}-t)+\cos(\displaystyle\frac{\pi}{2}-t)}dt$ $=\int\limits_0^{\pi/2}\frac{\cos t}{\sin t+\cos t}dt=J$ Mà ta có: $I+J=\int\limits_0^{\pi/2}dx=\frac{\pi}{2}$ Suy ra: $I=J=\frac{\pi}{4}$
|