|
Đặt $I=\int\limits_0^{\pi/2}\frac{\cos^{2014} x}{\sin^{2014} x+\cos^{2014} x}dx,J=\int\limits_0^{\pi/2}\frac{\sin^{2014} x}{\sin^{2014} x+\cos ^{2014}x}dx$ Đặt: $x=\frac{\pi}{2}-t\Rightarrow dx=-dt$ Ta có: $I=-\int\limits_{\pi/2}^0\frac{\cos^{2014}(\displaystyle\frac{\pi}{2}-t)}{\sin^{2014}(\displaystyle\frac{\pi}{2}-t)+\cos^{2014}(\displaystyle\frac{\pi}{2}-t)}dt$ $=\int\limits_0^{\pi/2}\frac{\sin^{2014} t}{\sin^{2014} t+\cos^{2014} t}dt=J$ Mà ta có: $I+J=\int\limits_0^{\pi/2}dx=\frac{\pi}{2}$ Suy ra: $I=J=\frac{\pi}{4}$
|