Theo Cauchy-Schwarz
2=1x+1y+1z+1t≥16x+y+z+t
⇒x+y+z+t≥8
x3x2+y2=x−xy2x2+y2
Theo BĐT Cauchy: x2+y2≥2xy
⇒xy2x2+y2≤xy22xy=y2
Tương tự với y,z,t, ta có :
x3x2+y2+y3y2+z2+z3z2+t2+t3t2+x2=(x−xy2x2+y2)+(y−yz2y2+z2)+(z−zt2z2+t2)+(t−tx2t2+x2)≥x−y2+y−z2+z−t2+t−x2=x2+y2+z2+t2≥4
Dấu "=" xảy ra ⇔x=y=z=t=2