√+5−4x−−−−−√−2x2x2−1
√+5−4x−−−−−√−2x2x2−1
tìm giới hạn A= limx→12x−1−−−−−√+5−4x−−−−−√−2x2x2−1
Ta có (√2x−1−1)+(√5−4x−1)−2(x2−1)x2−1=(√2x−1−1)x2−1+(√5−4x−1)x2−1−2
=2(x−1)(x−1)(x+1)(√2x−1+1)−4(x−1)(x−1)(x+1)(√5−4x+1)−2
=2(x+1)(√2x−1+1)−4(x+1)(√5−4x+1)−2=A
Vậy limx→1A=12−1−2=−52
√+5−4x−−−−−√−2x2x2−1
√+5−4x−−−−−√−2x2x2−1