Theo giả thiết: 1xy+1yz+1zx=1
Ta có:
P=(x−1)+(y−1)x2+(y−1)+(z−1)y2+(z−1)+(x−z)z2−(1x+1y+1z)
=(x−1)(1x2+1z2)+(y−1)(1x2+1y2)+(z−1)(1y2+1z2)−(1x+1y+1z)
≥2(x−1)xz+2(y−1)xy+2(z−1)yz−(1x+1y+1z)
=1x+1y+1z−2(1xz+1xy+1yz)=1x+1y+1z−2(1)
Mà (1x+1y+1z)2≥3(1xz+1xy+1yz)=3(2)
Từ (1) và (2)⇒P≥√3−2
Kết luận: Vậy min