2. ĐK: x≥1. Đặt 3√2−x=a,√x−1=b≥0. BPT
⇔{a3+b2=1a+b>1⇔{a3=1−b2a>1−b⇔{a3=1−b2a3>(1−b)3
⇔{a3=1−b21−b2>(1−b)3⇔{a3=1−b2(b−1)(b2−3b)>0
Do b≥0 nên (b−1)(b2−3b)>0⇔b>3 hoặc 0≤b<1.
+ Nếu b>3⇒a3=1−b2<1−9=−8⇒a<−2.
⇒{√x−1>33√2−x<−2⇒{x>10x>10⇔x>10.
+ Nếu 0≤b<1⇒0<a3=1−b2≤1⇒0<a≤1.
⇒{0≤√x−1<10<3√2−x≤1⇒{1≤x<21≤x<2⇔1≤x<2.