Cho (O) và (I) cố định (O thuộc (I) ) cắt nhau tại A và B ; vẽ đường kính $AE;BF$ của (O); C di động trên cung EF nhỏ của (O) không chữa $A ; CO$ giao (O) và (I) tại K và $D ;BK$ và BO giao AD và $AC$ tại M và $N$
a, Chứng minh BMAN nội tiếp
b,Chứng minh K là tâm đường tròn ngoại tiếp tam giác $ABD $
c, Tìm C để diện tích $(ABCD)$ max