Bpt $\Rightarrow 5(\sqrt{x}+\frac{1}{2\sqrt{x}})<2(x+\frac{1}{4x}+1)+2$$\Rightarrow 5(\sqrt{x}+\frac{1}{2\sqrt{x}})<2(\sqrt{x}+\frac{1}{2\sqrt{x}})^{2}+2$
Đặt $\sqrt{x}+\frac{1}{2\sqrt{x}}=$ a (a$\geq\sqrt{2}$)
Bpttt 5a<2a2+2 $\Rightarrow$ a>2(t/m) hặc a<$\frac{1}{2}$(k tm)
Sau tự giải