Có 14+2bc=a2+(b+c)2≥2a(b+c)⇒a(b+c)≤7+bc⇒4aa2+bc+7≤4a+b+c
a(b+c)≤(a+b+c2)2
⇒−3a(b+c)≤−12(a+b+c)2
4a+b+c−12(a+b+c)2≤13⇒4aa2+bc+7−3a2+bc+7≤13
(1+13)(a2+3c2)≥(a+b)2⇒a2+3c2≥34(a+b)2
⇒4(a+c)a2+3c2+28≤4(a+c)34(a+c)2+28≤125(a+c−4)+25
−5(a+b)2≤225(a+b−5)−15
⇒4(a+c)a2+3c2+28−5(a+b)2≤3a+2b+c−925
(3a+2b+c)≤√(a2+b2+c2)(32+22+12)
Từ đó Max=815