Cho tứ giác ABCD nội tiếp đường tròn (O) trong đó hai đường chéo AC và BD cắt nhau tại M. Cho biết ADB là tam giác cân có góc $A > 90^{0}$. Gọi I là tâm đường tròn ngoại tiếp tam giác DCM và J là tâm đường tròn ngoại tiếp tam giác BCM. Chứng minh rằnga) Góc IDB bằng góc JDB
b) Tổng các độ dài của hai đoạn thẳng ID và JB không tùy thuộc vào vị trí của điểm C trên cung lớn BD của đường tròn (O).