Ta có:$D=\sum_{}^{} \frac{2x}{\sqrt{4(y+z-4)}}\geq \sum_{}^{} \frac{2x}{\frac{4+y+x-4}{2}}=\sum_{}^{} \frac{4x}{y+z}$
$\geq 4.\sum_{}^{} \frac{x}{y+z}=4.\sum_{}^{}\frac{x^2}{xy+zx} \geq 4.\frac{(x+y+z)^2}{2(xy+yz+zx)}\geq 4.\frac{3}{2}=6.$
Vậy $Min$ $D=6\Leftrightarrow x=y=z=4$.
Bài toán xong !!!