ĐK:x≥−3;y≥1;...pt(1)⇔[(x+3)+6y]√y(x+3)=[8y+3(x+3)]y (1')
Đặt {√x+3=a√y=b;a≥0;b≥1
(1') tt:(a2+6b2)ab=(8b2+3a2)b2
⇔b(a−2b)(a3+5ab+4b2)=0
⇒a=2b ⇒x=4y−3
(2)tt√−16y2+32y+384=(y+3)√y−1+3y+17(3)
Xét thấy:√−16y2+32y+384=√−16(y−1)2+400≤20(4)
(y+3)√y−1+3y+17≥20(y≥1)(5)
(3)⇔(4)&(5) xra dấu''=''⇔y=1
⇒x=1(t/m đk)
KL:...