gt⇔(x+y)2+z2=8xy+2(x+y+z)≤2(x+y)2+2(x+y+z)⇔(x+y)2+2(x+y)+1≥z2−2z+1
⇔(x+y+1)2≥(z−1)2⇔x+y+2≥z
Khi đó VT≥x+1x+2y+1+y+1y+2x+1+(x+y)2(x+y+2)2
≥(x+y+2)2(x+1)(x+2y+1)+(y+1)(y+2x+1)+(x+y)2(x+y+2)2
≥(x+y+2)2(x+y)2+4(x+y)+2xy+2+(x+y)2(x+y+2)2≥(x+y+2)232(x+y)2+4(x+y)+2+(x+y)2(x+y+2)2
=2(x+y+2)3(x+y)+1+(x+y)2(x+y+2)2x+y→t≥2=2(t+2)3t+2+t2(t+2)2≥54
Pmin=54⇔x=y=1,z=4