Giả sử đã đặt được các số từ 1 đến 9 vào tất cả các ô của bàn cờ, mỗi số đều sử dụng đúng 1 lần và tổng số các ô trên cùng hàng, cùng cột và cùng đường chéo bằng nhau.
Tổng tất cả các số trên bàn cờ là: 1 + 2 + ... + 8 + 9 = (1 + 9) + (2 +8) + ... + (4 + 6) + 5 = 45.
Tổng này bằng tổng của 3 hàng cộng lại => Mỗi hàng có tổng là: 45 : 3 = 15
Suy ra tổng các số trên cùng hàng, cùng cột, cùng đường chéo đều bằng 15.
Trong số các hàng, cột và đường chéo có 4 đường chứa ô chính giữa (các đường màu đỏ trong hình vẽ). Tổng tất cả các số trên 4 đường này bằng 4 x 15 = 60 (vì mỗi đường có tổng bằng 15).
Mặt khác tổng các số trên 4 đường này cũng bằng tổng tất cả các số trên bàn cờ cộng thêm 3 lần ô chính giữa (vì mỗi ô tính 1 lần trừ ô giữa bàn cờ tính 4 lần), tức là bằng 45 + 3 lần [ô giữa].
Vậy ta có: 45 + 3 lần [ô giữa] = 60
Suy ra [ô giữa] = (60 - 45)/3 = 5.
Vậy Ô chính giữa đặt số 5.
Các số còn lại ghép thành cặp có tổng bằng 10 (vì tổng các đường đi qua ô chính giữa bằng 15) để xếp vào 4 đường đi qua ô chính giữa.
Các số trên 4 đường đi qua Ô giữa là: 1 - 5 - 9; 2 - 5 - 8; 3 - 5 -7; 4 - 5 - 6.
Sau đó sắp xếp các đường này hợp lý sao cho các hàng ngang, hàng dọc ở các mép bàn cờ cũng có tổng bằng 15 là được. Sau đây là 1 đáp án: